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160 Chapter 6 Introduction to Hypothesis Testing

m Basic Concepts of Hypothesis Testing

F or a complete understanding of hypothesis testing, one must first under-

stand three important concepts in statistics, namely, accept/reject decision
making, the Type I error, and the Type II error. Let’s see how these concepts
interrelate using chapter 5°s cutting machine problem. v

Suppose a machine in a dress factory cuts pieces of silk material to an
average length of 4 = 1000 mm with standard deviation ¢ = 12 mm. If we were
to continually take random samples, with 36 pieces of cut material in each sample,
and calculate the average length (¥) of the 36 pieces in each of these samples,
then experience tells us the resulting distribution of X’s would take the form of
the small histogram below,
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Now let us suppose the machine is turned off because it is late Friday
afternoon and all the workers are leaving the dress factory for the weekend. The
weekend passes and on Monday morning a sleepy-eyed operator starts up the
cutting machine in preparation for the week’s operation. The dial on the machine
is set to cut at 1000 mm. We know from our experiment the prior week that if
the machine is operating properly, the machine will be cutting pieces to an av-
erage length of 1000 mm, although some pieces will be shorter and some longer
in accordance with the large histogram above.

But how can we be sure that in our absence someone has not tampered with
the machine, that in closing down or starting up the machine critical parts have

#As stated in Section 5.1: through computer simulation, fifteen thousand samples of size nn = 36 can
be chosen, sample averages calculated and these values organized into a histogram to represent the
total. Refer to chapter 5 endnote 2 for detailed discussion of sampling distributions.
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not vibrated loose, or that our sleepy-eyed operator has not accidentally moved
the dial off its setting. The answer is: until we take some cuts, we usually have
no way of knowing.

Certainly, the length of the first two or three picces of material off the
cutting machine will be measured. This acts as a quick and simple check for any
gross malfunctioning. However, after you measure the first few pieces, let the
machine run for a period to stabilize. Then take a true random sample, say for
instance of 36 pieces. Measure the length of each piece in the sample and cal-
culate X, the average length. £

With this completed, we refer to the small histogram reprinted below for
your reference.
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996 1004
998 | 1002
1000 mm

The small histogram shows us where sample averages (¥’s) should fall on
a properly operating machine, Just about every sample average falls between 994
mm and 1006 mm. Certainly, on Monday morning, if you were to calculate an X
outside this 994 mm to 1006 mm range, then most likely the machine is not
operating properly, not cutting on average at 1000 mm. On the other hand, if you
were to calculate a sample average between 998 mm and 1002 mm, you would
feel the machine was probably cutting okay, since this is where you would expect
to find most of the sample averages (X’s) on a properly operating machine.

However, this leaves a gigantic borderline. What if you were to get a sample
average of exactly 994 mm? Or 996 mm? Or 998 mm? At what point do we say
the machine is cutting okay, or not cutting okay? Fortunately industry and re-
search have been grappling with this question for decades and, from vast expe-
rience, have come up with some guidelines. One guideline establishes the middle
95% of the X’s on a properly operating machine as a gauge in a cold-hearted
accept/reject decision.
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Accept/Reject Decision Making

Accept/reject decision making fundamentally proceeds in three steps, as follows:

1. The first step in an accept/reject decision is to set up some initial
assumption. Although many initial assumptions are possible, in this case,
the preferred initial assumption is L = 1000 mm since this is where we

suspect (and hope) the machine is cutting on average. So, as first step, we
state:

Initial assumption: u = 1000 mm

2. The second step in an accept/reject decision is to establish some guideline
for accepting or rejecting your initial assumption. In this case, we will
choose the often used middle 95% of the X’s guideline, as follows:

]
x distribution

~— 050 —=
/\\ distribution

Problem reprinted from
chapter 5, exercise 1, solution a

976 mm

988 mm

i
¥=996.08 mm | ¥
z=-1.96 z

1000 mm

1
1003.92 mm
+1.96
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1024 mm

As calculated in a prior example, the middle 95% of the X’s on a properly
operating machine would be expected to fall between 996.08 mm and
1003.92 mm, so your accept/reject decision would be as follows.

Accept 1 = 1000 mm

Reject 1 = 1000 mm

if your sample X is outside this range

if your sample X is between 996.08 mm and 1003.92 mm
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3. The third step is a decision. If your sample average (%) is between 996.08
mm and 1003.92 mm, you accept the machine as cutting properly at
p = 1000 mm. If your sample X is outside this range, you assume the
machine is cutting improperly, that is, not at @ = 1000 mm. It’s a simple
accept L = 1000 mm or reject 4 = 1000 mm decision, no maybes, no in-
betweens. You accept 4 = 1000 mm or reject © = 1000 mm. Period.

But aren’t accept/reject decisions risky? Accept/reject decisions if properly
thought out are one of the most powerful and efficient devices in statistical re-
search, however, yes, they do come with risk. One of the risks is called the Type
I error.

Type | Error

Let’s continue with the cutting machine problem. If we adopt the middle 95% of
the X’s as our gauge for accepting or rejecting whether a machine is operating
properly, then we must remember 5% of the X’s will fall outside this 996.08 mm
to 1003.92 mm range (100% minus 95%) when the machine is operating properly,
as follows:

On a properly operating maching
5% of the x's will fall outside

this acceptance range for p = IOM
95% |

t 5%
996.08  1003.92

That means on a properly operating machine, 5% of the time you will reject
the machine as operating properly. In other words, there is a 5% probability of
rejecting a properly operating machine when, in fact, we should not reject it.

l Type | error: rejecting an initial assumption in error. I

In this case, our initial assumption is that the machine is operating
properly at p = 1000 mm. However, on a properly operating machine, 5%
of the time you will reject this initial assumption in error. This is called
a Type I error and its probability, in this case, is 5%. The probability of a
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Type 1 error is denoted by the symbol, o (alpha), traditionally labeled the level
of significance and written in decimal form as follows:

Level of significance, o = .05

Unfortunately we must live with some Type I error risk for the convenience and
efficiency of an accept/reject decision.

Hold it a minute! What is he jabbering about? We don’t have to live with
this 5% risk, you might say. Why not establish a middle 99% of the X’s for
accepting the machine as operating properly. This lowers the Type I error risk
to 1% (99% + 1% = 100%). In other words, only 1% of the X¥’s on a properly
operating machine will fall outside the 99% range. Written in statistical terms,
you would say

Why not impose a level of significance, o = .017

The level of significance o = .01 is also often used in industry and research.
But let’s see what happens when this is done.

x distribution

Problem reprinted from
chapter 5, exercise
1. solution b

999, —|

/ X distribution

¥=994.84 mm | x =1005.16 mm

976 mm z=-2.58 z=+4+2.58 1024 mm

‘8 mm 1000 mm 1012 mm

In this case, the middle 99% of the X’s on a properly operating machine would
be expected to fall between 994.84 mm and 1005.16 mm (as calculated in a prior
exercise, noted above). Notice, if we lower the risk of a Type I error from 5% to
1%, we “*open up’’ the range of sample averages where we would consider the
machine operating properly, as follows:

o = .05 Machine cutting okay if X is between 996.08 mm and 1003.92 mm

o = .01 Machine cutting okay if X is between 994.84 mm and 1005.16 mm

By opening up the range for accepting the machine as operating properly,

we reduce the risk of a Type 1 error from 5% to 1%. However, this leaves us
more vulnerable to another form of risk, called the Type II error.
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Type Il Error

Okay, we have just decided to reduce our chances of a Type I error by opening
up the range of sample averages where we would consider the machine as op-
erating properly. We have adopted the following guideline.

o = .01 Any sample average (X) between 994.84 mm and 1005.16 mm is
assumed to come from a properly operating machine, that is, a
machine cutting okay at i = 1000 mm.

The situation now arises: what if we turn on the machine Monday morning,
sample 36 pieces as usual, and obtain an X of say, 995.00 mm? You must con-
clude: machine okay, probably cutting at gt = 1000 mm, since ¥ = 995.00 mm
falls between 994.84 mm and 1005.16 mm, as follows:

F 99 —

Sample average: x = 995\ /\—\ distribution

X

1000 mm
994.84 mm 1005.16 mm

Now here’s the problem. A sample average ¥ = 995.00 mm is also “typi-
cal” for a machine cutting at, say for instance, p = 995 mm. How do we know
a pin is not stuck in the machine so that the machine is now, in reality, cutting
on average to 995 mm? Or to 994 mm? Or to 996 mm? In other words, Has
there been a shift? The answer to this question is: we don’t know. Based on a
sample average ¥ = 995 mm you accepted the fact of the machine cutting
at p = 1000 mm. However if the machine in reality has actually shifted to
u =995 mm (or to any other value), we have just committed a Type 11 error.

l Type |l error: accepting an initial assumption in error. I
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Again, our initial assumption is that the machine is operating properly at

= 1000 mm. If we accept u = 1000 mm, when in reality, u # 1000 mm, we

have committed a Type II error. The probability of committing a Type II error
is denoted by the symbol, p (beta).

Note, had we adopted the middle 95% of the X's for accepting a machine
as operating properly (0. = .05) by accepting i = 1000 mm if x falls between
996.08 mm and 1003.92 mm, then a sample average (¥) of 995.00 mm would
have alerted us to a possible malfunction since X = 995 mm falls outside the
996.08 to 1003.92 range. In other words, had we accepted our original 5% Type
I error risk, the Type II error above would not have occurred. Generally, de-
creasing the probability of a Type I error merely increases the probability of a
Tvpe II error.

To summarize

Type I error: rejecting an initial assumption in error.
Type Il error: accepting an initial assumption in error.

Remember: decreasing the Type [ error by imposing a lower «, say for instance
going from .05 to .01, merely increases your Type Il error risk.

Power

Statisticians will often evaluate a statistical test in terms of its power. Power
simply means the probability of making the correct decision by avoiding a Type
11 error. If you calculate a Type Il error risk of 10% the power of the test is 90%.
If your Type II error risk is 30%, your power is 70%. Either you make the Type
I error or you make the correct decision. The sum of the two must equal 100%,
that is, B + Power = 100% or Power = 100% — B. Written in decimal form, it
is expressed as Power = | — B. Remember: B is the probability of making a
Type 11 error.

Precise calculations of the Type Il error and power will be demonstrated
in the following two examples. To summarize:

Power
Probability of making a correct decision by avoiding a Type |l error

Power = 100% — B=1-

m Applications

Accept/reject decision making is standard practice in statistical testing. However,
accept/reject decisions do come with risk. Four examples that demonstrate this
risk are presented.
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In the cutting machine problem, suppose we establish the middle 92% of the ¥’s
as our cutoffs for accepting u = 1000 mm. Assuming n = 36 and ¢ = 12 mm,

a. What is the probability of a Type I error?
b. Between what ¥ values would you accept the machine cutting at g = 1000
mm?
¢. Explain briefly how one might commit a Type I error.
The probability of a Type I error is simply 8% (100% — 92% = 8%). Written in

statistical terms, you would state oc = .08. In other words, on a properly operating
machine, 8% of the X’s would fall outside your acceptance range for i = 1000

mm, as shown:

X distribution: several thousand
sample averages which represent the total

92%

R

This is a typical “*working backward (given the area, find z)"" problem for the
normal curve, only now we are dealing with the normal curve of the X distribution.
Since we know the area between the critical cutoffs is 92%, we merely look up
the corresponding z scores. Doing this, we get z = —1.75 and z = +1.75. (Re-
member the table reads half the normal curve, so we must look up an area of
46% (+ of 92%) or in decimal form .4600.)

Using z = —1.75 and = = +1.75, we calculate the values at the cutoffs as
follows:
12 xX—u X—u
Or=—==2 z= z=
- < 36 O (632
x — 1000 X — 1000
i 20 e 000
2 2
X = 996.50 mm X = 1003.50 mm

X distribution

2 e

i f
¥=996.50 | x=1003.50
z=-1.75 z=+1.75

1000 mm

So, you would accept the machine as cutting properly, cutting at g = 1000 mm,
if you obtained a sample average between ¥ = 996.50 mm and ¥ = 1003.50 mm.
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The following might be a Type I error scenario: You random sample 36 pieces
and your sample average falls outside this 996.50 mm to 1003.50 mm range, say
for instance you obtain a sample average of ¥ = 994 mm. Based on this you
reject the machine as operating properly and shut down production.

If indeed the machine is not operating properly, not cutting on average to
i = 1000 mm, then you have made no error. Your decision was correct. However,
if the machine is okay, cutting properly at g = 1000 mm, and you happened to
have sampled one of those rare 8% occurrences, then you have made a Type I
error. ]

In the cutting machine problem, suppose we arbitrarily establish ¥ = 997 mm to
X = 1003 mm as our cutoffs for accepting i = 1000 mm. Assuming n = 36 and
o = 12 mm,

a. What is the probability of a Type I error?

b. What is the probability of a Type Il error if the machine shifts and is now
cutting at 4 = 995 mm?

¢. What is the power of the test in part b?

The percentage of ¥'s on a properly operating machine that fall ousside the 997
mm to 1003 mm range is your Type I error risk. It is represented by the shaded
regions in the diagram below. Calculating the percentage of data in the shaded
regions we get

c 12 x—u =
UT_ﬁ_ \/%—me z= = 7 = =
L 997 — 1000 _ 1003 — 1000
T 2 T 2
z = —150 z = +1.50

Looking up z = 1.50, we get 43.32%, with 6.68% in the tail.

X distribution

43.32%
6.689’3)( 6.68%
|

f t
997 mm | ¥= 1003 mm
-1.50 z=+1.50

1000 mm

X

The probability of a Type I error is 13.36% (6.68% + 6.68%). In other words,
on a properly operating machine the percentage of X’s you would expect to fall
outside the 997 mm to 1003 mm range is 13.36%. Written in decimal form (.1336)
and rounded to two decimal places, you would say:

o=.13
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If a machine is indeed cutting at i = 995 mm, the sample averages (¥’s) now
would cluster about © = 995 mm, as follows:

i distribution

AN

995 mm

You would commit a Type II error if you accepted (in error) the machine cutting
at i = 1000 mm. The only way you would accept a machine cutting at L = 1000
mm is if you took a random sample of 36 pieces and your sample average (x)
fell between 997 mm and 1003 mm. So, to calculate B, the probability of a Type
IT error, you must calculate the percentage of X's that would fall between 997
mm and 1003 mm from a machine cutting at 4 = 995 mm.

Remember: the machine is cutting at &1 = 995 mm but you are unaware of
this. The only information available to you is your one sample average, X.

To find the probability of a Type II error in this problem, we calculate the
percentage of X’s that we would expect to fall between 997 mm and 1003 mm,
represented by the shaded region in the diagram below:

o] 12 , % = X |,
O; = —F/= = —— = 2 mm* z= gr
' \/; \,:% Gs O%
_ 997 — 995 ~ 1003 — 995
4 o 2
z= +1.00 z = +460
(disregard since negligible
data exists in this region)
A distribution 34.13% \
|
t 1
997 1003
z=+1.00 z=+4.00
995 |_Accept |
range for
u = 1000

*Technical note: 1 and & are independent. A shift in u will generally not affect 6. See
endnote 10 in chapter 10 for further reading.
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Looking up z = 1.00, we get 34.13%, thus our Type Il error risk is 15.87% (50%
minus 34.13%). Since 15.87% of the X’s coming from a machine cutting at 4 =
995 mm would be expected to fall between 997 mm and 1003 mm, this 15.87%
is the risk you will obtain one of these X¥’s and thus conclude (erroneously) the
machine was cutting at @ = 1000 mm. So, your risk of a Type II error when L
shifts to 995 mm is 15.87%. Written in decimal form (.1587) and rounded to two
decimal places, you would say:

B=.16 which is the probability you will accept your initial assumption,
u = 1000 mm, in error. This is your Type II error risk for a shift
to L = 995 mm.

Power is the probability of making a correct decision by avoiding a Type II
error. For this test, Power = 84% (100% — 16%). Written in decimal form,

I
1.00 — .16
= .84)

Power = .84 (Note: Power

Explained another way, since 84.13% of the X’s (50% + 34.13%) will be lower
than 997 mm, as shown on the previous diagram, you have an 84.13% chance
your sample average will be less than 997 mm. In that case, you would reject
u = 1000 mm, which would be the correct decision. In other words, we have an
84.13% chance of making the correct decision (rejecting p = 1000 mm) and a
15.87% chance of making the wrong decision (accepting u = 1000 mm). Power
is the probability of making the correct decision in this situation and {3 the prob-
ability of making the wrong decision. ]

The National Institutes of Health agreed to supply active disease viruses, such
as polio and AIDS, to research firms for the purpose of experimentation. A pro-
cess is set up to automatically fill millions of small test tubes to an average of
9.00 ml of disease virus with standard deviation .35 ml.

With sample sizes of n = 49 test tubes, it was calculated that 99% of the
sample averages (X's) would fall between 8.87 ml and 9.13 ml (chapter 5, section
5.2, second example). If we use this 8.87 ml to 9.13 ml range of sample averages
as our criterion to accept L = 9.00 ml,

a. What is the probability of a Type I error?

b. What is the probability of a Type II error if the process shifts to p = 9.20
ml?

c. What is the power of the test in part b?

Since 99% of the X’s fall between 8.87 ml and 9.13 ml, 1% of the X’s will fall
outside this range. In other words, there is a 1% chance you will obtain an X
outside this 8.87 ml to 9.13 ml range when the process is operating properly. So
your probability of a Type I error is 1%. Written in decimal form you would say:

o = .01 which is the probability you would reject your initial assumption
(1 = 9.00 ml) in error. This 1% is your Type I error risk.
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The test tubes are now filling on average at 4 = 9.20 ml, so your sample averages
(x’s) would now cluster about 9.20 ml, as follows:

/

¥ distribution

5

9.20
H

You would commit a Type IT error if you accepted the process filling at u = 9.00
ml. The only way you would accept the process filling at . = 9.00 ml is if you
took a random sample of 49 test tubes and your average (¥) fell between 8.87 ml
and 9.13 ml. So, to calculate B, the probability of a Type II error, you must
calculate the percentage of X’s that would fall between 8.87 ml and 9.13 ml from
a process filling at 1 = 9.20 ml.

Remember: the process is filling at @ = 9.20 ml but you are unaware of
this. The only information available to you is your one sample average, ¥.

To find the probability of a Type II error in this problem, we calculate the
percentage of x’s that we would expect to fall between 8.87 ml and 9.13 ml,
represented by the shaded region in the diagram that follows:

c 35 xX— LU X—u
Oz = \/’—? = \/4—9 = .05 ml z = o z= P
__887-920  9.13-920
T 05 - 05
2= —660 2= —1.40

(disregard since
negligible data exists
in this region)

41.929% i distribution
8.08%
| ol
f t
8.87 9.13
7 =-6.60 z=-140

Accept | 9.20
range for |
p=9.00
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Looking up z = —1.40, we get 41.92%. thus our Type II error risk is 8.08%.
Since 8.08% (50.00% minus 41.92%) of the X’s coming from a process filling at
(= 9.20 ml would be expected to fall between 8.87 ml and 9.13 ml, this 8.08%
is the risk you will obtain one of these X’s and thus conclude (erroneously) the
process was filling at i = 9.00 ml. So, your risk of a Type II error when p shifts
t0 9.20 ml is 8.08%. Written in decimal form (.0808) and rounded to two decimal
places, you would say:

B =.08 which is the probability you will accept your initial assumption,
1t = 9.00 ml, in error; this is your Type IT error risk for a shift to
K= 9.20 ml.

Since power is the probability of making the correct decision by avoiding a Type
11 error, we get 1009% — 8.08% = 91.92%

Power = 91.92% or .92

Put another way: since 91.92% (50% plus 41.92%) of the X’s will be greater than
9.13 ml, you have a 91.92% chance your sample average will be greater than
9.13 ml. In that case, you would reject i = 9.00 ml, which would be the correct
decision. In other words, we have a 91.92% chance of making the correct decision
(rejecting 1 = 9.00 ml) and a 8.08% chance of making the wrong decision (ac-
cepting L = 9.00 ml). &

m Controlling Error

Although a number of techniques can be used to decrease error risk, perhaps the
most broadly preferred is increasing n, your sample size. This is best explained
through practical example, as follows.

In our cutting machine problem (section 6.2, second example), we arbi-
trarily established ¥ = 997 mm to ¥ = 1003 mm as our cutoffs for accepting W
= 1000 mm. Using n = 36 and 6 = 12 mm, we calculated the probability of a
Type I error to be 13.36% (6.68% + 6.68%), as follows:

X distribution Forsei86

6.68% 6.68% Type | error risk
o e = 13.36% (6 = .13)

i t
997 1003
z=-1.50 | z=+1.50

‘ 1000
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For the probability of a Type Il error if i shifts to 995 mm, we calculated 15.87%,
as follows: ‘
|, Accept
range for
u = 1000 Forn =36

15.87% Type Il error risk
= 15.87% (B = .16)

X distribution

:
Pl
997 1003
z=+1.00 z=+4.00

995

Now here’s a problem: 13.36% is too high for a Type [ error risk. It means,
13 times out of 100 you will reject a properly operating machine as malfunc-
tioning. Checking out a properly operating machine for a malfunction that doesn’t
exist can be time consuming and expensive. Well, then, how do we lower this
Type I error risk? There are a number of ways. but each come with drawbacks.
We will discuss three.

In production or quality control situations, as in this example, most likely
a back up sample would be taken, that is. a second random sample drawn from
the machine’s output. However, as mentioned above, this can be time consuming
and expensive. Moreover, the use of back up samples in most industry and re-
search situations is just not practical. Most statistical studies are exceedingly
expensive (marketing studies often cost hundreds of thousands of dollars), ex-
ceedingly time consuming (scientific studies can easily range two to ten years),
and exceedingly enervating.

A second approach is to arbitrarily set a lower Type I error risk, say from
13.36% to 1%, but as we discussed at length in prior sections, arbitrarily lowering
your Type I error risk merely increases your Type Il error risk (in fact, in this
case lowering the Type I error risk from o = 13.36% to o = 1% would merely
increase the  error, the Type Il error risk, from 15.87% to over 53%) and a large
Type 1I error risk means if the machine actually shifts, there is a high probability
you won’t be able to detect it.

A third approach, and perhaps the most preferred, is to increase your sample
size. Let’s see what happens when we increase our sample size to n = 144,

In our cutting machine problem, suppose we arbitrarily establish ¥ = 997 mm to

X = 1003 mm as our cutoffs for accepting it = 1000 mm, only this time we

increase our sample size to n = 144, (Assume ¢ = 12 mm.)

a. Calculate the probability of making a Type I error.
b. Calculate the probability of making a Type Il error if 4 shifts to 995 mm.
¢. Compare these results to the results when n = 36.
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Since n, your sample size, has increased from 36 pieces of cut material to 144
pieces of cut material, the sample averages (X’s) now cluster much closer to
u = 1000 mm. In fact, calculating 6z we get

12 12
0= ——=—= ] mm
144 12

The percentage of X’s on a properly operating machine that fall outside the 997
mm to 1003 mm range is shown by the shaded regions in the following diagram.
This is your Type I error risk. Notice how the shaded area can barely be seen.
This is because, now, the X’s have clustered much closer to © = 1000 mm.
Calculating the percentage of data in the shaded region,

__X=Q _x-u

Z= - zZ= s

~ 997 — 1000 ~ 1003 = 1000
== 1 T 1

z= -=3.00 z = +3.00

Looking up z = 3.00, we get 49.87% with .13% in the tail.

~ N

49.879% /.? distribution for n = 144

.136/;>(L13%
N s

1 t
997 mm | 1003 mm
z=-3.00| z=+3.00

1000 mm

On a properly operating machine, the percentage of X’s you would expect to fall
outside the 997 mm to 1003 mm range is .26% (.13% + .13%), which is much
less than 1%. This is your Type I error risk. Written in decimal form (.0026) and
rounded to three decimal places, you would write o0 = .003. In other words, there
is less than 3 chances in 1000 of making a Type I error. Small indeed.

If the machine is indeed cutting at @ = 995 mm, the sample averages (xX’s) would
now cluster about i = 995 mm, as indicated in the following figure.
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X distribution for n‘: 144

/.

995 mm

You would commit a Type II error if you accepted (in error, of course) the
machine cutting at @ = 1000 mm. The only way you would accept the machine
cutting at il = 1000 mm is if you took a random sample of 144 pieces and your
sample average (¥) fell between 997 mm and 1003 mm. So, to calculate B, the
probability of a Type Il error, you must calculate the percentage of X’s that would
fall between 997 mm and 1003 mm from a machine operating at L = 995 mm.

Remember: the machine is cutting at |t = 995 mm but you are unaware of
this. The only information available to you is your one sample average, X. To
find the probability of a Type Il error in this problem, we calculate the percentage
of X’s that we would expect to fall between 997 mm and 1003 mm, represented
by the shaded region in the diagram below:

4] 12 12
0\——ﬁ=ﬁ=a—lmm
_X=p _X—
T Ox T Oz
BT ~99 1003 — 995
o 1 T 1
z = +2.00 z = +3.60

(disregard since negligible
data exists in this region)

‘ Forn = 144
X distribution for n = 144 Type Il error
47.72% =2.28% B = .02)
2.28%
to 1
997 | 1003
z=+2,00 i z=+8.00

995 AC(I.‘EPE__'
range for
u= 1000
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Looking up z = +2.00, we get 47.72%, thus our Type II error risk is 2.28%.
Since 2.28% (50% — 47.72%) of the X’s coming from a machine cutting at
= 995 mm would be expected to fall between ¥ = 997 mm and X = 1003 mm,
this is the risk you will obtain one of these X’s and thus conclude (erroneously)
the machine was cutting at @ = 1000 mm. So. your risk of a Type II error when
p shifts to 995 mm is 2.28%. Written in decimal form (.0228) and rounded to
two decimal places, you would say

B=.02
Solution to (c) The following is a comparison of results:
Forn = 36 Forn = 144
o = 13.36% o = less than 1%
B=1587% B=228%
(for W shifting (for 1 shifting
to 995 mm) to 995 mm)

When we increase our sample size from 36 pieces to 144 pieces, note the for-
midable drop in risk. The Type 1 error risk () drops from 13.36% to less than
1%. The Type Il error risk (3) drops from 15.87% to 2.28%. Of course, in prac-
tical terms, increasing your sample size will add cost and inconvenience, but
usually these are small prices to pay for the added protection. B

In conclusion, controlling errors should be thought out at the initial stages
of planning a statistical study. Although other methods are available, the pre-
ferred method for lowering Type I and Type II error risks is by increasing your
sample size.

Summary
Three fundamental concepts were presented in this 95% We calculate where the middle 95% of
chapter as follows. Guideline the x’s would be expected to fall if the

initial assumption were true. If our
sample ¥ falls in this 95% range, we
accept our initial assumption, otherwise
reject (see sketch).

1. Accept/reject decision making: Accept/reject
decision making proceeds as follows. The first
step is to set up some initial assumption, say for
instance that a population mean, [, equals some
specific value. Then we establish guidelines for
accepting and rejecting this initial assumption.

Population

The final step is to accept or reject based on -I_fAC;‘;Pq‘_.
T i 5 or¥)%
sample results. of ©'s

Two popular guidelines for accept/reject decision s
making are as follows. ,
¥
5% total




99% We calculate where the middle 99% of
Guideline the X's would be expected to fall if the

initial assumption were true. If our
sample X falls in this range, we accept
our initial assumption, otherwise reject
(see sketch).
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Now, by chance, we may actually get sample X’s
falling in this accept zone even though the initial
assumption is incorrect.
The probability that your sample X will fall in this
accept zone when the initial assumption is incorrect
is called a Type II error risk and its probability will
vary depending on several factors.

Population

Accept
for 99%

of ©'s

L]

7o 1olal

Accept/reject decision making is an efficient
procedure well-suited for the cost-conscious needs of
research and business, however it does come with
risks, discussed as follows.

2. Type I error (the o risk): One risk is the
probability of rejecting your initial assumption in
error. For instance, say we establish the 95%
guideline for accepting some initial assumption.
Thus, if the initial assumption were true, 95% of
the x’s would fall in the accept zone and indeed
we would make the correct decision (by accepting
the initial assumption). However, this also implies
that 5% of the X's will fall outside the accept zone
even though the initial assumption is true, and we
will reject the initial assumption in error.

This 5% is called the level of significance or
Type I error risk for this experiment and is usually
denoted as o = .05,

3. Type Il error (the B risk): Another risk is the
probability of accepting the initial assumption in
error. For instance, say we establish a 95%
guideline for accepting some initial assumption,
however this initial assumption is not true. Since
we usually have no way of knowing the initial
assumption is not true prior to sampling, we set up
an accept zone and proceed with the experiment.

Power: Essentially power phrases the Type 11
error risk in positive terms. For instance, say
under a particular set of conditions, we calculate
the Type 11 error risk to be 12%, then the power
of the experiment is 88% (100% minus 12%),
meaning 88% of the time you will reject the initial
assumption correctly and only 12% of the time
will you commit the Type II error by accepting it
erroneously (see sketch for detailed explanation of
this example).

Actual
population

Accept zone_

for initially
assumed u
. ‘

f
Initially Real
assumed u
u

Actual
s

B Error  Power

B Error: Say for instance, 12% of the actual x's fall in the accept
zone for some initially assumed , thus 12% of the time you will
accept the initially assumed p in error (not realizing the real wis in a
different position).

Power: For this example the power is 88% (100% minus 12%),
meaning 88% of the time the sample x's will fall outside the accept
zone for the initially assumed p and you will reject the initially
assumed 1t (which is the correct decision).

Controlling error in experiments: Generally
in an experiment, we wish both risks (Type I and
Type II) to be as low as possible. However, de-
creasing the Type I risk (say for instance, by low-
ering the o level of the experiment from .05 to
.01) merely increases your Type II error risk.
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Perhaps the best approach to reducing errors is to
increase your sample size substantially, which
lowers your Type II error risk, thus allowing for
greater flexibility in setting a Type I error risk (o
level) for your experiment. The negative side of
increasing the sample size is that it may be costly,
time-consuming, or in some cases not feasible.

Exercises

Another approach is to conduct a second study,
however this is often exceedingly costly, time
consuming and may arouse questions as to why
you didn’t plan the initial study more carefully
(say for instance, by using a larger sample size).
And in many cases conducting a second study is
simply not feasible.

Note that full answers for exercises 1-5 and
abbreviated answers for odd-numbered exercises
thereafter are provided in the Answer Key.

6.1

In the cutting machine problem, suppose we

establish the middle 98% of the X’s as our guideline
for accepting 1L = 1000 mm. Assuming n = 36 and
o = 12 mm,

a.
b.

What is the probability of a Type I error?
Between what ¥ values would you accept the
machine cutting at @ = 1000 mm?

. Explain briefly how one might commit a Type I

error.

6.2 Referring to exercise 6.1,

a.

b.

What is the probability of a Type II error if the
machine shifts to u = 995 mm?

Compare Type I and Type II error risks calculated
in this question with those of the second example
of section 6.2 where we calculated the Type [ and
II error risks to be 13.36% and 15.87%,
respectively. What principle concerning Type |
and Type II errors is demonstrated?

6.3 In the cutting machine problem, for p = 1000
mm, ¢ = 12 mm, and n = 36,

a.

If you wish to establish a Type I error risk of
10%, find the X cutoffs for accepting i = 1000
mm.

. Calculate the probability of a Type II error for a

shift to @ = 1004 mm.

. What is the power of the test in part b?

6.4 In the National Institutes of Health problem,
suppose we arbitrarily establish X = 8.90 ml to

X = 9.10 ml as our cutoffs for accepting test tubes
filling on average to u = 9.00 ml. Assuming n = 49
and ¢ = .35 ml,

a. What is the probability of making a Type I error?

b. Using this example, briefly define a Type I error
and discuss the consequences of making a Type 1
error.

¢. What is the probability of a Type II error for a
shift to g = 9.14 ml?

d. Using this example, briefly define a Type II error
and discuss the consequences of making a Type II
error.

6.5 Referring to exercise 6.4,

a. What is the probability that when the process is
““in control’” (filling properly), you will believe
the process malfunctioning?

b.

What is the probability that when the process goes
“*out of control’” (filling improperly), say filling at
w = 9.14 ml, you will believe the process is filling
correctly?

6.6 In the National Institutes of Health problem, for
i =29.00ml o= .35ml and n = 49,

a.

b.

Establish a Type [ error risk of 1% and find the X
cutoffs for accepting u = 9.00 ml.

Calculate the probability of a Type II error for a
shift to i = 8.85 ml.

. What is the power of the test in part b?



6.7 In the cutting machine problem, for p = 1000
mm and 6 = 12 mm, suppose we establish ¥ = 997
mm to X = 1003 mm as our cutoffs for accepting

[ = 1000 mm, calculate your Type I error risk and
your Type II error risk (for a shift to 1 = 995 mm)
for,

a. n = 30.
b. n = 100.
c. Compare the results in parts a and b,

6.8 Brell shampoo, an “‘in-house’” brand, is
marketed through a large national chain of
convenience stores. This chain also carries other
national brands of shampoo. Brell’s in-house market
share is U = 24.0 (meaning: on average 24.0% of the
shampoo sold in these stores is Brell) with standard
deviation 3.2.

Suppose we arbitrarily establish ¥ = 23.3 to
X = 24.7 as our cutoffs for accepting i = 24.0;
assuming sample size n = 75,

a. What is the probability of a Type 1 error?

b. What is the probability of a Type II error for a
shift to p = 23.0?

¢. What is the power of the test in part b?
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6.9 Referring to exercise 6.8,

a. Suppose we establish X = 23.1 to ¥ = 24.9 as our
cutoffs for accepting 1 = 24.0, what effect would
this have on our Type I and Type II error risks
and on power?

b. Recommend a way to decrease both your Type I
and Type II error risks.

6.10 In the horror film moviegoer problem,
suppose we arbitrarily establishx = [7.0tox = 17.8
years old as our cutoffs for accepting the average age
of L = 17.4 years old. Assuming ¢ = 2.7 years,
calculate the risks for a Type I error and for a Type
IT error (assuming a shift to u = 16.8 years old) for,

a. n = 45,
b. n = 250.
¢. Compare the results in parts a and b.






